If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-77x+10=0
a = 1; b = -77; c = +10;
Δ = b2-4ac
Δ = -772-4·1·10
Δ = 5889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-77)-\sqrt{5889}}{2*1}=\frac{77-\sqrt{5889}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-77)+\sqrt{5889}}{2*1}=\frac{77+\sqrt{5889}}{2} $
| 18x-24=-6(3x+4) | | 167x-19=1123 | | -x-(-4)=-x-x+1 | | 25c+10c²=0 | | 1123=19x-167 | | 26=m/3 | | j/8-(-24)=25 | | Y=4x-200 | | 19x+157=1123 | | F(10)=3x-10 | | C=50n+3 | | -x-(-4)=2(-x)+1 | | 90=5+5v | | p/7-1=4 | | -20-x=60 | | 167+19x=1132 | | 2d-26=38 | | -7x-x=-56 | | 5.95x+0.19=15.95 | | (x/4)+10=24 | | .-0.2k=-15 | | -13+4a=19 | | 23/95=x | | 195=7x+6(x+13) | | 6+7b=41 | | s/2+11=15 | | 9x-5x+160=9x+75 | | 3r-1÷8=8 | | (2x+5)=3x+90 | | 7w-13=8 | | -4(2x3)=-6x+12-2x | | 7=k+12/5 |